limas t. abcd diketahui panjang rusuk rusuknya sama perbandingan luas alas abcd dengan luas

“Luas seluruhnya sebelah tegaknya” = ini anggap belaka total luas latar empat segitiga sama arah (tanpa alas).

Perbandingan:

Luas alas ABCD : Luas rataan empat segitiga sebelah

Karena “tinggi rusuk-rusuknya sama”, misalkan saja tingkatan sisinya a cm.

Karena ga ditulis poin tinggi piramida, misalkan saja panjangnya t.

[ Mencari luas wana ABCD ]

Luas ABCD = sisi x sisi

= a x a

= a²

[ Luas meres empat segitiga sisi ]

Luas permukaan empat segitiga sisi (tanpa pangan) = 4 x TAB

Sesuai di soal, maksud “luas seluruhnya jihat tegakyna” itu luas dari empat segitiga yang perot di limas (atau lebih jelasnya segitiga TAB bisa dilihat di susuk jawaban ini).

Kerjakan cari tinggi segitiga (TE), pakai rumus:

TE² = OE² + OT²

TE² = (1/2 a)² + t²

TE =

Saat dibuat rumus segitiga TAB:

TAB = 1/2 x hutan x tinggi

= 1/2 x a x TE

= 1/2 x a x

= a/2 x

Terlampau, masukkan nilai TAB ke rumus luas satah

Luas permukaan catur segitiga sisi (tanpa alas) = 4 x TAB

= 4 x a/2 x

= 2a x

Setelah dapat angka luas ABCD dan luas permukaan yg tadi, tinggal masukkan ke perbandingan:

Luas alas ABCD : Luas permukaan empat segitiga jihat

a² : 2a x

Ibarat, kita bagi a = 1 dan lengkung langit = 1. Maka perbandingannya:

1² : 2 x 1 x
\sqrt{(1/2 * 1)^2 + 1^2}

1 : 2
\sqrt{1/4 + 1}

1 : 2
\sqrt{5/4}

1 : 2 *
\sqrt{1,25}

1 : 2 * 1,11

1 : 2 * 1 (Dibulatkan dari 1,11 menjadi 1 kendati bisa hitung)

1 : 2

Jadi hasil perbandingan luas alas ABCD dengan luas meres empat segitiga sama kaki sisi “luas seluruhnya arah tegaknya” adalah:

1 : 2

Catatan:

Aku ga tau sih pertanyaan nan ia buat ini (pertanyaan) bener-bener butuh bantuan atau ga. Tapi aku yakin jawabannya begini.




banner

×